The Weather Wise and the Otherwise

Benjamin Franklin

Anchoring

"The Art of Staying Put"

driven by weather awareness

How much time will you spend at anchor?Changing weather system

Power cruiser priorities

Lessens pitching moment

Windlass anatomy

Capstan
Chain gypsy
Chain brake
Warping bitt
Recessed switch

The lure of the lunch hook
 Undersized anchors
 Light wind
 Protected anchorage
 Good holding ground

When will conditions change?

Rules of the Rode

Challenges with every anchorage
Nylon v. polyester/polyethylene
Types of chain

don't forget about the tidal range

 $L \div H + D = \text{scope ratio}$

The right ratio?

It all depends

The weak link

material
Fabrication
Corrosion
Fatigue

ACCO G43 Domestic High Test ISO Chain

A high tensile strength carbon steel anchor (windlass) chain with an ISO short link. The short link makes it more flexible and ideally suited as a windlass chain.

ACCO G70

 Hot-Dip Galvanized High-Test Chain
 Hot dip galvanizing coupled with superior strength-to-weight-ratios (compared to Grade 43 chain) make Grade 70 chain the choice for some but not all boaters.

Roller and sprit design
Fairlead to windlass
A good lead for a "snubber" line

Chain termination

 A rope tail allows the chain rode to be released in an emergency

Rope Rodes

- STRETCH
- CHAFE
- STRESS

Nylon Yarn

Filament - yarn – strand - rope

Destructive testing

Friction caused melting

Thimbles

To swivel or NOT

The spare-man a-k-a bow roller

Shape of the stem
Side plates and structure
One or two rollers

Stem shape, roller, anchor implications

 Fabrication and foredeck structure
 Adaptable sprit for foil-less roller fitting

Anchor Windlass

Vertical v. Horizontal windlasses Mechanical structure and backing plate

Placement and control location

 Chain stripping
 Chain castling
 Twisting chain

Repairability

Clutch v. electric up and down

Parts availability

Metallurgy

Anchor Overkill?

1

4 .

A five year voyage around the world

THE ART OF

EVOLVING SKILLS, EXPLORING OCEANS, AND HANDLING WIND, WAVES, AND WEATHER

Anchor Selection –

No perfect anchor for all conditions—some better than others

Snake oil and anchor spin

- Never drags
- Ultra light
- Needs no chain
- Holds like an anchor twice its size

In your mind

Pattern and purpose
Materials used
Method of construction

How easy is it to bend or break?

Plow pattern

Versatile
Relies upon weight and shape
Good reset characteristics
Behaves as named----PLOW

LEW

Hook and claw pattern

Quick to set
Versatile
Weld and metallurgy dependent

Check the welds

heni

Forging versus casting

Casting is brittle and prone to voids
Weak vulnerable flukes
Lower strength to weight ratio

dillo Still of Chills

Older Danforth H - series

Excellent Craftsmanship

- Quality welds
- Effective design
- Functional fluke area to weight ratio

Fortress understanding aluminum

High holding power to weight ratio
Vulnerable to snagging
Stows in pieces
Stainless and aluminum

Stainless steel ???

Anchoring

A push button experience run from the pilot house?

Electrical requirements
 battery location issues

 Forward battery location
 HD cables and long run

Power source Ohm's Law and wire gauge

Lead angles

 Does the layout improve the anchoring process or does it complicate the routine?

Wash down pump
Scrub brush and bucket
Short tow and drag clean

Test limitations

Setting and resetting Single line hold Cold front passage

Luck and a lunch hook

Certain patterns are better suited to certain substrates

- Danforth
- Plow
- Claw
- Hook
- Yachtsman
- Yard art

Setting an anchor

Power through and check soundings
Note stage of tide and range
Evaluate swinging room
Gather stern way
Deploy rode
Set anchor (s)

Four alternatives

The single anchor solution
Double up
Bow and stern
Tandem

Dragging anchor

More scope

Power yaw and set second anchor

Retrieve and reset

Storms seem worse at night!

Improve the chance of reset-balance the fluke area/weight ratio Plowing (a controlled drag)....good or bad Large fluke anchors can be reluctant to reset

ocean passage making

Is the anchor well secured?

Practical Decision Making

Bottom conditions
Holding capacity
Regulatory factors

Weather conditions

Vessel Constraints

Design factors

 Windage
 Underbody configuration
 Displacement

Anchoring Scenarios

Swinging room

Poor holding grass, dredge spoil, hard slab

Tranquility at anchor

The weather wise...

know what to look for